20130522112JH, the basic scientific research foundation for the i

20130522112JH, the basic scientific research foundation for the interdisciplinary research and innovation project of Jilin University under Grant no. 201103129, and the Science Foundation for China Postdoctor under Grant no. 2012M510879.
Plate-reinforced composite (PRC) coupling beam, that is, conventionally Rapamycin mTOR reinforced concrete (RC) coupling beam embedded with a vertical steel plate and provided with shear studs for transferring forces between concrete and steel plate, is a practical alternative design to improve the strength, ductility, and energy dissipation ability of conventional RC coupling beams. By adopting this alternative design, the failure mode of coupling beams can be changed from a brittle sliding shear failure at the beam-wall joints to a desirable ductile flexural failure [1].

The experimental results of deep PRC coupling beams subjected to reversed cyclic loading [2] showed that even vertical cracks were formed at the interface between the beam and the adjacent wall piers, with the lateral constraints provided from the surrounding concrete, plate instability was not observed, and plate strengthened beams could still resist very high shear in the postpeak stage.By considering the transverse and longitudinal slips of the shear studs at the span of the beams, Lam et al. [3] worked out a design formula for determining the number of studs required. By evaluating the bearing stress distribution at the plate anchor, Su et al. [4] developed a design model for the anchor of steel plates in wall piers.

It is well known that laboratory tests are costly and time consuming and, in some cases, can even be impractical due to the limitations of laboratory settings. Recently, Henriques et al. [5] and Ellobody and Young [6] have successfully utilized nonlinear finite element packages to conduct comprehensive investigations on various steel composite structures. Su et al. [7] developed an accurate and efficient nonlinear finite element model to investigate the internal stress and force distributions on the steel plates embedded in PRC coupling beams. In their studies, the finite element models were validated by GSK-3 the well-controlled experimental results before they were used for carrying out the parametric studies. Reliable numerical results, such as full-field internal stress distributions, in far more detail than is possible in laboratory work were obtained. Based on the numerical results, a set of equations for quantifying the shear stud force demands and a series of nondimensional design charts for determining the internal forces of the embedded steel plates were also constructed.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>