The original

The original Vandetanib CAS leaf-marking technique has been considered to provide reliable estimates of productivity, thus explaining its use in many seagrass species [21]. But tissue damage caused by marking may also influence subsequent estimations of growth [19]. And this methodology cannot account for the leaf material produced within the sheath during the elongation interval [22, 23]. It has been also pointed out that leaf marking can underestimate growth because the maturation process of seagrass leaves involves cell expansion and an increase in leaf mass (leaf weight per unit area) that is not measured by the weight of newly produced leaf tissue [11, 24, 25]. Short [25] developed the elongation mass method, which modifies the conventional leaf-marking procedure by changing the reference point placed above the sheath and puncturing the shoot at a predetermined distance above the meristem within the sheath.

In order to correct the underestimation attributable to leaf growth assessments based on the weight of immature leaf sections from newly grown leaf tissues, the elongation mass method accounts for leaf elongation and weight gain that are part of total leaf growth. Growth in biomass is calculated by multiplying the leaf elongation rate by the leaf weight-to-length ratio (mgcm?1) of mature leaf material [11]. The notions of a weight-to-length ratio of mature leaf material, along with that of the plastochrone interval (the time period between the development of two successive leaves), are at the core of the plastochrone method for eelgrass growth assessments [11].

This procedure provides a much simpler alternative to previous time-consuming techniques that were based on traditional leaf marking. Growth is captured by using the weight of a mature leaf as a surrogate for all growing tissue in a shoot over a given plastochrone interval. In effect, measuring the length of mature leaves and converting to leaf weight by using a weight-to-length ratio can be considered as a nondestructive method for determining production of leaf biomass [26]. Our previous results showed that an allometric representation of eelgrass leaf biomass in terms of length is highly consistent [27], whereas the leaf weight-to-length ratio proxy is sustained by an isometric scaling of leaf biomass in terms of length; therefore the suitability of Drug_discovery either approach has to be substantiated on the basis of model selection criteria, which has not been yet produced. In the present research we have made an attempt to fill this gap.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>