, 2009) A few studies have attempted to identify the genes respo

, 2009). A few studies have attempted to identify the genes responsible selleck for this loss in the competence for hair cell transdifferentiation

by cochlear support cells. One candidate is Sox2, since it is expressed in sensory epithelial precursors in the inner ear and is required for their formation. However, Sox2 is expressed in the mature Deiters’ cells, and therefore its presence does not correlate with the loss of hair cell competence in Deiters’ cells (Oesterle et al., 2008). Signaling molecules may also be critical for limiting the process of transdifferentiation in the organ of Corti: FGF signaling may also play a role in limiting the competence of pillar cells to transdifferentiate into hair cells, though Deiters’ cells may use a different mechanism (Doetzlhofer et al., 2009). In sum, successful regeneration of hair cells in nonmammalian vertebrates requires a coordinated induction of Atoh1 and the Notch pathway in the support cells. Neonatal mammals still display some aspects of these phenomena in the cochlea, and they may extend into adulthood in the vestibular epithelia to a limited extent. In light of these results,

several groups have asked whether expression of Atoh1 is sufficient to generate new hair Selleck S3I-201 cells from nonsensory cells in the inner ear (Gubbels et al., 2008 and Zheng and Gao, 2000). Studies in the adult guinea pig have shown that overexpression of Atoh1 can promote new hair cell formation in the normal and damaged organ of Corti, by reprogramming of the remaining support cells (Izumikawa et al., 2005 and Kawamoto et al., 2003), though most of the new hair cells appeared in nonsensory regions of the inner ear epithelium. The potential of support cells to generate hair cells using Atoh1 appears to be limited to a critical window, since infection 6 days after

the damage no longer induces new hair cells (Izumikawa et al., 2008). Nevertheless, taken together with the chick and fish studies, it would appear that the expression of Atoh1 after damage might be sufficient for direct transdifferentiation of support/nonsensory Olopatadine cells to hair cells and clearly represents a key step in the regeneration process. In amphibians, particularly urodeles (e.g., salamanders), new retina can be generated from the nonneuronal cells of the retinal pigmented epithelial layer (RPE). The RPE cells respond to retinal damage by re-entering the mitotic cell cycle, losing their pigmentation and acquiring gene expression patterns similar to the retinal progenitors found in embryonic development (for review, see Lamba et al., 2008 and Moshiri et al., 2004).

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>