Acknowledgements The authors thank the financial support given by the project CSD2010-0044, which belongs to the ‘Consolider
Ingenio’ Programme of the Spanish Ministry of Finances and Competitiveness. References 1. Lee EK, Yin L, Lee Y, Lee JW, Lee SJ, Lee J, Cha SN, Whang D, Hwang GS, Hippalgaonkar K, Majumdar A, Yu C, Choi BL, Kim JM, Kim K: Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties. Nano Lett 2918, 12:2012. 2. Savin AV, Kosevich Yu A, Cantarero A: Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures. BMS-907351 research buy Phys Rev B 2012, 86:064305.CrossRef 3. Wang JS: Quantum thermal transport from classical molecular dynamics. Phys Rev Lett 2007, 99:160601.CrossRef 4. Donadio D, Galli G: Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from
molecular dynamics and the Boltzmann transport equation. Phys Rev Lett 2007, 99:255502.CrossRef 5. Heatwole EM, Prezhdo OV: Second-order Langevin equation in quantized Hamilton dynamics. J Physical Soc Jpn 2008, 77:044001.CrossRef 6. Buyukdagli S, Savin AV, Hu B: Computation of the temperature dependence of the heat capacity of complex molecular systems using random color noise. Phys Rev E 2008, 78:066702.CrossRef 7. Ceriotti M, Bussi G, Parrinello M: Nuclear quantum effects in solids using a colored-noise GF120918 mouse thermostat. Phys Rev Lett 2009, 103:030603.CrossRef 8. Dammak H, Chalopin Y, Laroche M, Hayoun M, Greffet JJ: Quantum thermal bath for molecular dynamics simulation. Phys Rev Lett 2009, 103:190601.CrossRef 9. Wang JS, Ni X, Jiang JW: Molecular
dynamics with quantum heat baths: application to nanoribbons and nanotubes. Phys Rev B 2009, 80:224302.CrossRef 10. Kosevich YuA: Multichannel propagation and scattering of phonons and photons in low-dimension nanostructures. Physics-Uspekhi 2008, 51:848.CrossRef 11. Kosevich Yu A, Savin AV: Reduction of phonon thermal conductivity in nanowires and nanoribbons with dynamically rough surfaces and edges. Europhys Lett 2009, 88:14002.CrossRef 12. Turney JE, McGaughey AJH, Amon CH: Assessing the applicability of quantum corrections Fenbendazole to classical thermal conductivity predictions. Phys Rev B 2009, 79:Fludarabine molecular weight 224305.CrossRef 13. Mingo N: Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys Rev B 2003, 68:113308.CrossRef 14. Martin P, Aksamija Z, Pop E, Ravaioli U: Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys Rev Lett 2009, 102:125503.CrossRef 15. Zhang W, Mingo N, Fisher TS: Simulation of phonon transport across a non-polar nanowire junction using an atomistic Green’s function method. Phys Rev B 2007, 76:195429.CrossRef 16. Roethlisberger U, Andreoni W, Parrinello M: Structure of nanoscale silicon clusters. Phys Rev Lett 1994, 72:665.CrossRef 17.