Photoconductivity, persistent photoconductivity, and subgap photo

Photoconductivity, persistent photoconductivity, and subgap photoconductivity

of the coated nanowires were increased in all cases. TaN ALD coatings showed a reduced effect compared to the Al(2)O(3) coated samples.”
“Background: Nowadays, the genus Bryconamericus is placed in subfamily Stevardiinae within of Characidae, but not shows consistent evidence of monophyletism. The purpose of this work was to study the chromosomes of three species of Bryconamericus, aiming to add cytogenetic knowledge and contribute to the understanding of the chromosomal evolution of this genus.

Results: The chromosomes of three species of Bryconamericus were analyzed using cytogenetic techniques. The karyotype of Bryconamericus stramineus contained 6 metacentric (m) + 10 submetacentric (sm) + 16 subtelocentric (st) + 20 acrocentric (a), the fundamental number (FN) of 84, one silver this website impregnated (Ag-NOR) learn more pair, one pair bearing the 18S ribosomal DNA sites, another pair bearing the 5S rDNA sites, and a few positive C-bands. Bryconamericus turiuba had a karyotype containing 8 m + 10sm + 14st + 20a (FN = 84), one chromosome pair Ag-NOR, two pairs bearing the 18S rDNA sites, two pairs bearing the 5S rDNA sites, and a few C-band regions. Bryconamericus cf. iheringii had a karyotype containing 10 m + 14sm + 18st + 10a (FN = 94),

including one pair with a secondary constriction Ag-NOR positive. In this karyotype the fluorescent in situ hybridization (FISH) showed the 18S and 5S rDNA probe in adjacent position.

Conclusions: The results obtained in this work showed different characteristics in the organization

of two multigene families, indicating that distinct evolutionary forces acting on the diversity of rDNA sequences in the genome of three Bryconamericus species.”
“Complete mitochondrial DNA sequences Salubrinal have been used successfully to estimate phylogenetic relationships among animal taxa, and for studies of population genetics and molecular evolution. We made phylogenetic analyses of 22 species of Galliformes, with two species of Anseriformes as outgroups, using maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) methods based on the nucleotide dataset and the corresponding amino acid dataset of 13 concatenated protein-coding genes. The consensus phylogenetic trees supported monophyly of Galliformes, Phasianidae (nucleotide and amino acid: posterior probabilities 1.00 in BI, bootstrap value >99% in ML and MP), Coturnicinae, and Gallininae (nucleotide and amino acid: posterior probabilities 1.00 in BI, bootstrap value >85% in ML and MP), but failed to demonstrate monophyly of Pavoninae and Phasianinae. Our results also support a sister-group relationship between megapodes and all other galliforms. We found that Arborophilinae is basal to the balance of the Phasianidae. Moreover, we suggest that the turkey should be classified in the Phasianinae of Phasianidae.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>