TQ appeared to be active both in a NSCLC and a SCLC cell line. TQ inhibited proliferation of NSCLC cell line NCI-H460 and induced apoptosis. Similarly cell viability of SCLC cell eFT508 lines NCI-H146 was decreased and cells underwent apoptosis after exposure to TQ. More importantly TQ acted synergistically with CDDP in a NSCLC cell line which is very encouraging. This inhibitory effect of TQ on lung cancer cell proliferation is not unique as recently TQ has been shown to inhibit growth of prostate, pancreatic and colon
cancers [11] However, this is the first time that we have demonstrated anti-neoplastic effects of TQ in Lung Cancer using both a NSCLC and a SCLC cell line. Combination of TQ and CDDP is also unique and the results are encouraging as the two drugs have differing mechanism of action, the former being a cell cycle specific and the latter non-cell cycle specific. The dose of TQ used in these experiments may not be feasible in humans. Recently, Banerjee et al [21] have shown that more potent synthetic analogues of TQ can be prepared which can potentially be developed for future human use. Besides anti-proliferative and pro-apoptotic effects TQ appears to affect tumor microenvironment. TQ reduced the release of two cytokines selleck inhibitor ENA-78 and Gro-alpha which are involved in inflammation selleck kinase inhibitor and angiogenesis [22]. ENA-78 has been shown to be elevated in NSCLC
surgical samples and correlates with tumor growth and vascularity [23]. ENA-78 and GRO belong Forskolin order to a family of ELR+ve CXC cytokines and are potent promoters of angiogenesis [24]. Similarly using Matrigel assay we were able to demonstrate that TQ inhibited invasion of NCI-H460 cells into Matrigel. Inhibition of tumor angiogenesis by TQ and its effects on invasion have recently been shown by others as well [25]. Thus TQ appears to be an agent that not only affects cell proliferation but may also influence the extra-cellular environment and immune system. As far as toxicity from TQ is concerned
there appears to be no significant toxicity demonstrated from use of TQ alone in our MTD study using female SCID mice. When TQ was used alone no mortality was observed, mice maintained their weight and no significant tissue damage was observed on histological analysis of liver and kidney. In the MTD study where a higher dose of CDDP (5 mg/kg) was used in combination with TQ mortality was observed in mice and most of the tissue damage was noticed to be in kidneys. It appears that the nephroprotective effects of TQ against CDDP as demonstrated in a previous study [12] were not reproduced in our model. The Combination of TQ with higher doses of CDDP also contributed to significant weight loss and apparent dehydration which may have resulted in worsening of kidney damage from CDDP and ultimately their demise.