Control: the cells treated with C. butyricum. Discussions The intestinal epithelial cell surface represents the largest exposed surface of the body that must be protected by the immune system against toxic substance and pathogenic bacteria. All intestinal epithelial cells are usually capable of regulating the immune response through different mechanisms,
one of which is the secretion of anti-inflammatory cytokines. buy PRN1371 Throughout the present study, we have focused on the role of IL-10 in regulating epithelial cell function. IL-10 is a potent GSK126 inhibitor of pro-inflammatory cytokine production, and has been shown to inhibit production of IL-6 and IL-1β in macrophages [18, 19]. Supporting evidence for a role for IL-10 in inflammation is derived from studies in mice deficient in IL-10 or harboring mutated IL-10, which are a model of enterocolitis [20]. These IL-10−/− mice under normal conditions show increased inflammatory responses and develop inflammatory bowel disease. Moreover, these IL-10−/− mice are extremely susceptible to infection-induced immunopathology [21]. All these data suggest that endogenous IL-10 synthesis plays an important role in vivo in down-regulating immune responses and preventing host immunopathology. Moreover, beneficial effects
in colitis patients have been obtained via probiotic bacteria-induced IL-10 production [22]. In our current study, C. butyricum stimulates elevated levels of IL-10 in HT-29 cells. Because this website this probiotic strain is frequently used in the management of allergic diseases or gastroenteritis, it is hypothesized that it promotes mucosal tolerance mediated through
IL-10. Therefore, we further assessed the role of IL-10 in probiotic-mediated immune modulation by neutralizing or knocking down IL-10 in HT-29 cells. It was found that disruption of IL-10 enhanced effects of C. butyricum-induced NF-κB activation and IL-8 secretion. The results demonstrate that C. butyricum modifies the mucosal immune response to modulate the levels of specific molecules such as cytokines by increasing IL-10 levels and consequently decreasing inflammatory cytokines. The viability of cells is dependent on cytokines. However, high-dose cytokines can induce apoptosis and necrosis. Bacteria and their metabolites can induce an anti-proliferative effect through induction of apoptosis [23–25]. Fluorometholone Acetate In the current study, disruption of IL-10 enhanced C. butyricum-induced IL-8 secretion. We further assessed whether this probiotic strain induced apoptosis and necrosis of HT-29 cells due to a lack of effect of IL-10. The results showed that the number of abnormal cells significantly increased compared to the control, indicating that disruption of IL-10 caused a loss of suppression of the mucosal immune response and even excessive apoptosis and necrosis. This study confirmed that C. butyricum exerts anti-inflammatory effects and enhances tolerance to bacteria through increasing IL-10 production.